11,043 research outputs found

    Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials

    Get PDF
    Powder Bed Fusion (PBF) is a range of advanced manufacturing technologies that can fabricate three-dimensional assets directly from CAD data, on a successive layer-by-layer strategy by using thermal energy, typically from a laser source, to irradiate and fuse particles within a powder bed.The aim of this paper was to investigate the application of this advanced manufacturing technique to process ceramic multicomponent materials into 3D layered structures. The materials used matched those found on the Lunar and Martian surfaces. The indigenous extra-terrestrial Lunar and Martian materials could potentially be used for manufacturing physical assets onsite (i.e., off-world) on future planetary exploration missions and could cover a range of potential applications including: infrastructure, radiation shielding, thermal storage, etc.Two different simulants of the mineralogical and basic properties of Lunar and Martian indigenous materials were used for the purpose of this study and processed with commercially available laser additive manufacturing equipment. The results of the laser processing were investigated and quantified through mechanical hardness testing, optical and scanning electron microscopy, X-ray fluorescence spectroscopy, thermo-gravimetric analysis, spectrometry, and finally X-ray diffraction.The research resulted in the identification of a range of process parameters that resulted in the successful manufacture of three-dimensional components from Lunar and Martian ceramic multicomponent simulant materials. The feasibility of using thermal based additive manufacturing with multi-component ceramic materials has therefore been established, which represents a potential solution to off-world bulk structure manufacture for future human space exploration

    Electrohydrodynamic and Aerosol Jet Printing for the Copatterning of Polydimethylsiloxane and Graphene Platelet Inks

    No full text
    The performance of soft sensing and actuation devices is dependent on their design, the electro‐mechanical response of materials, and the ability to copattern structural and functional features. For film based soft structures, such as wearable sensors and artificial muscles, manufacturing challenges exist that prevent the translation of technology from laboratory to practical application. In this work, a hybrid manufacturing technique is presented that integrates electro‐hydrodynamic and aerosol jet deposition to print multilayer, multimaterial structures. The combined approach overcomes the respective rheological constraints of the individual processes, while presenting a pathway to higher resolution computer‐controlled patterning. Electro‐hydrodynamic deposition of a polydimethylsiloxane elastomer is demonstrated and characterized, before being combined with aerosol jet deposition of a graphene platelet ink to produce functional devices. A proof‐of‐concept, multilayer capacitive sensor is presented as a first demonstration of the manufacturing technology

    The Effect of Ultrasonic Excitation on the Electrical Properties and Microstructure of Printed Electronic Conductive Inks

    Get PDF
    Abstract: Ultrasonic Additive Manufacturing (UAM) is an advanced manufacturing technique, which enables the embedding of electronic components and interconnections within solid aluminium structures, due to the low temperature encountered during material bonding. In this study, the effects of ultrasonic excitation, caused by the UAM process, on the electrical properties and the microstructure of thermally cured screen printed silver conductive inks were investigated. The electrical resistance and the dimensions of the samples were measured and compared before and after the ultrasonic excitation. The microstructure of excited and unexcited samples was examined using combined Focused Ion Beam and Scanning Electron Microscopy (FIB/SEM) and optical microscopy. The results showed an increase in the resistivity of the silver tracks after the ultrasonic excitation, which was correlated with a change in the microstructure: the size of the silver particles increased after the excitation, suggesting that inter-particle bonding has occurred. The study also highlighted issues with short circuiting between the conductive tracks and the aluminium substrate, which were attributed to the properties of the insulating layer and the inherent roughness of the UAM substrate. However, the reduction in conductivity and observed short circuiting were sufficiently small and rare, which leads to the conclusion that printed conductive tracks can function as interconnects in conjunction with UAM, for the fabrication of novel smart metal components

    Ultrasonic Additive Manufacturing as a form-then-bond process for embedding electronic circuitry into a metal matrix

    Get PDF
    Ultrasonic Additive Manufacturing (UAM) is a hybrid manufacturing process that involves the layer-by-layer ultrasonic welding of metal foils in the solid state with periodic CNC machining to achieve the desired 3D shape. UAM enables the fabrication of metal smart structures, because it allows the embedding of various components into the metal matrix, due to the high degree of plastic metal flow and the relatively low temperatures encountered during the layer bonding process. To further the embedding capabilities of UAM, in this paper we examine the ultrasonic welding of aluminium foils with features machined prior to bonding. These pre-machined features can be stacked layer-by-layer to create pockets for the accommodation of fragile components, such as electronic circuitry, prior to encapsulation. This manufacturing approach transforms UAM into a “form-then-bond” process. By studying the deformation of aluminium foils during UAM, a statistical model was developed that allowed the prediction of the final location, dimensions and tolerances of pre-machined features for a set of UAM process parameters. The predictive power of the model was demonstrated by designing a cavity to accommodate an electronic component (i.e. a surface mount resistor) prior to its encapsulation within the metal matrix. We also further emphasised the importance of the tensioning force in the UAM process. The current work paves the way for the creation of a novel system for the fabrication of three-dimensional electronic circuits embedded into an additively manufactured complex metal composite

    Customisable 3D printed microfluidics for integrated analysis and optimisation

    Get PDF
    The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum path length for performing Ultraviolet-visible (UV-vis) spectroscopy determined. The information gained in these trials was then used in a reaction optimisation for the formation of carvone semicarbazone. The production of high resolution surface channels (100–500 μm) means that these devices were capable of handling a wide range of concentrations (9 μM–38 mM), and are ideally suited to both analyte detection and process optimisation. This ability to tailor the chip design and its integrated features as a direct result of the reaction being assessed, at such a low time and cost penalty greatly increases the user's ability to optimise both their device and reaction. As a result of the information gained in this investigation, we are able to report the first instance of a 3D-printed LOC device with fully integrated, in-line monitoring capabilities via the use of embedded optical fibres capable of performing UV-vis spectroscopy directly inside micro channels

    Towards quantifying uncertainty in predictions of Amazon 'dieback'.

    Get PDF
    This is the final version of the article. It first appeared from The Royal Society via http://dx.doi.org/10.1098/rstb.2007.0028Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple 'big-leaf' approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth

    Binding specificity of the G1/S transcriptional regulators in budding yeast

    Get PDF
    G1/S transcriptional regulation in the budding yeast Saccharomyces cerevisiae depends on three main transcriptional components, Swi4, Swi6 and Mbp1. These proteins constitute two transcription factor complexes that regulate over 300 G1/S transcripts, namely SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). SBF and MBF are involved in regulating largely non-overlapping sets of G1/S genes via clearly distinct mechanisms

    3D embedded freeform electrical circuitry in metal componentry

    Get PDF
    A novel embedding process combining the use an ultrasonic solid-state welding technique coupled with a material direct writing technique to embed electronic devices and to print conductive features inside a three dimensional metallic housing container is proposed. This process has the advantages of (i) inexpensive fabrication, (ii) flexibility in sizes of embedded devices, and (iii) allowing for arrangement of embedded components in 3D. A fully functional demonstrator of a complete 3D LED circuitry has been successfully fabricated as the results of our fundamental researches gathered
    corecore